Non-opaque and Opaque Ice Cloud Properties from Infrared Radiances at 3.7, 6.7, 11.0, and 12.0 µm

Gang Hong¹, Patrick Minnis², William L. Smith, Jr.², Szedung Sun-Mack¹, J. Kirk Ayers¹, Christopher R. Yost¹, Yan Chen¹

¹SSAI/NASA LaRC, Hampton, VA, USA ²NSAS LaRC, Hampton, VA, USA

IR Retrieval?

- weather and climate modeling
 - cloud diurnal cycle
 - cloud climatology, long term variation
- is still remained the challenge
- Not like VIS, IR radiances of clouds are more sensitive to cloud and atmospheric profiles
- IR blackbody limitation, effective emissivity close to 1, reliable Tau < 6-8

Only 3.7, 6.7, 11.0, and 12.0-µm bands?

- focus on retrieval algorithms using fewer IR bands, mostly common.
- cloud retrieval algorithms utilized as few channels that are common to most meteorological satellite imagers as possible have the advantage of producing consistent cloud properties (Minnis et al., 2011)

Objectives

- physical retrievals of cloud-top temperature/height, effective emissivity, Tau for non-opaque ice clouds
- neural network training for opaque ice cloud Tau

Estimating Non-opaque Ice Cloud Tc from 6.7 and 11.0-µm Radiances

Current CERES nighttime cloud retrieval algorithm: The Shortwave-infrared Infrared Split-window Technique (SIST) for all surfaces at night (CERES, Minnis et al.,1998; 2011) using 3.7, 11.0, and 12.0 µm.

When there is no 3.7 or 12 µm available (e.g., some GEOs)

Szejwach (1982)

$$I_{wv} = (1 - N\varepsilon_{wv}) \cdot I_{wv}^{clear} + N\varepsilon_{wv} \cdot I_{wv}^{cloud}$$

$$I_{11} = (1 - N\varepsilon_{11}) \cdot I_{11}^{clear} + N\varepsilon_{11} \cdot I_{11}^{cloud}$$

Satellite Measured Radiance Effective Emissivity Cloud Radiance at Tc Blackbody

Pixel-based:

Tc is derived by matching the ratio along black line

Could be strongly affected by variation of clear sky radiance

Cluster-based:

Linear fitting cluster pixels, crossing with simulated opaque ice cloud ratio (black line)

Could be less affected by variation of clear sky radiance with respect to pixel-based method.

Ice Cloud Top Temperatures/Heights

Ice Cloud Top Temperatures/Heights

Non-opaque Ice Cloud Effective Emissivity and Optical Thickness (1)

Once obtaining Tc for non-opaque ice clouds, $N\varepsilon$ is derived from

$$I_{11} = (1 - N\varepsilon_{11}) \cdot I_{11}^{clear} + N\varepsilon_{11} \cdot I_{11}^{cloud}$$

 $N\varepsilon$ is then converted to visible optical thickness using parameterizations from Minnis et al. (1993, 1998),

$$\tau_{VIS} = -2.13 \cdot \ln(1 - N\varepsilon)$$

Using BTD(6.7-11.0) for Tau, weakly sensitive to Re

Optical thickness from 6.7 and 11.0 µm vs. VISST Retrievals

VISST - the Visible Infrared Solar-infrared Split Window Technique (Minnis et al., 1998, 2011)

Opaque Ice Cloud Optical Thickness from IR Retrieval - Blackbody Limitation

IR Radiances Over DCC: Observations and Simulations (Minnis, Hong, and et al., 2012)

IR Radiances Over DCC: Observations and Simulations (Minnis, Hong, and et al., 2012)

Opaque Ice Cloud Optical Thickness from IR Measurements: **Neural Network Training and Validation**

Training data: 2007 LaRC C3M Data at night (globally) (Kato et al., 2011)

Validation data: 2008 LaRC C3M Data at night (globally)

Opaque Ice Cloud Optical Thickness from IR Measurements: An Example of Application

Geographical Distribution of Opaque Ice Cloud Optical Thickness at Nighttime

Visible Optical Thickness

10 100

Summary

- Water vapor band at 6.7 μm and IR window band at 11.0 μm are used to estimate non-opaque ice cloud-top temperature. Agree well with CO2 slicing method, slightly higher.
- After obtaining Tc, Nɛ and Tau of non-opaque ices are derived from parameterization method and physical retrieval method. Tau is very consistent with the results from visible measurements.
- Opaque ice clouds become IR blackbody emission
 Rigorous radiative transfer modeling using *in situ* measurements indicates that 3.7, 6.7, 11.0, and 12.0-μm still show some sensitivities to opaque ice cloud, at least to Tau ~ 20.
- Go beyond IR blackbody limitation for estimating opaque ice cloud Tau from a neural network method built on the basis of collocated MODIS IR measurements and CloudSat-derived Tau in 2007.
 2008 data used to validate the technique find that IR-estimated Tau agrees with CloudSat-derived Tau for opaque ice clouds with uncertainty of ~63%.